Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 16(11): e0260283, 2021.
Article in English | MEDLINE | ID: covidwho-1523456

ABSTRACT

SARS-CoV-2 viral attachment and entry into host cells is mediated by a direct interaction between viral spike glycoproteins and membrane bound angiotensin-converting enzyme 2 (ACE2). The receptor binding motif (RBM), located within the S1 subunit of the spike protein, incorporates the majority of known ACE2 contact residues responsible for high affinity binding and associated virulence. Observation of existing crystal structures of the SARS-CoV-2 receptor binding domain (SRBD)-ACE2 interface, combined with peptide array screening, allowed us to define a series of linear native RBM-derived peptides that were selected as potential antiviral decoy sequences with the aim of directly binding ACE2 and attenuating viral cell entry. RBM1 (16mer): S443KVGGNYNYLYRLFRK458, RBM2A (25mer): E484GFNCYFPLQSYGFQPTNGVGYQPY508, RBM2B (20mer): F456NCYFPLQSYGFQPTNGVGY505 and RBM2A-Sc (25mer): NYGLQGSPFGYQETPYPFCNFVQYG. Data from fluorescence polarisation experiments suggested direct binding between RBM peptides and ACE2, with binding affinities ranging from the high nM to low µM range (Kd = 0.207-1.206 µM). However, the RBM peptides demonstrated only modest effects in preventing SRBD internalisation and showed no antiviral activity in a spike protein trimer neutralisation assay. The RBM peptides also failed to suppress S1-protein mediated inflammation in an endogenously expressing ACE2 human cell line. We conclude that linear native RBM-derived peptides are unable to outcompete viral spike protein for binding to ACE2 and therefore represent a suboptimal approach to inhibiting SARS-CoV-2 viral cell entry. These findings reinforce the notion that larger biologics (such as soluble ACE2, 'miniproteins', nanobodies and antibodies) are likely better suited as SARS-CoV-2 cell-entry inhibitors than short-sequence linear peptides.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antiviral Agents/pharmacology , Peptides/pharmacology , Protein Binding/drug effects , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization , A549 Cells , Humans , Protein Interaction Domains and Motifs
2.
Pept Sci (Hoboken) ; 113(4): e24217, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1014097

ABSTRACT

COVID-19 is caused by a novel coronavirus called severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Virus cell entry is mediated through a protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and angiotensin-converting enzyme 2 (ACE2). A series of stapled peptide ACE2 peptidomimetics based on the ACE2 interaction motif were designed to bind the coronavirus S-protein RBD and inhibit binding to the human ACE2 receptor. The peptidomimetics were assessed for antiviral activity in an array of assays including a neutralization pseudovirus assay, immunofluorescence (IF) assay and in-vitro fluorescence polarization (FP) assay. However, none of the peptidomimetics showed activity in these assays, suggesting that an enhanced binding interface is required to outcompete ACE2 for S-protein RBD binding and prevent virus internalization.

SELECTION OF CITATIONS
SEARCH DETAIL